ADAM15 is an adherens junction molecule whose surface expression can be driven by VE-cadherin |
| |
Authors: | Ham Claire Levkau Bodo Raines Elaine W Herren Barbara |
| |
Affiliation: | British Heart Foundation Laboratories, Department of Medicine, University College London, London, United Kingdom. |
| |
Abstract: | ADAM15 belongs to the family of proteins containing disintegrin and metalloprotease domains (ADAM) that have been implicated in cell adhesion via integrin binding and shedding of cell surface molecules. Here we provide the first report on the localization of an ADAM in adherens junctions. We show that ADAM15 colocalizes with a cell adhesion molecule, vascular endothelial (VE)-cadherin, which mediates endothelial cell adherens junction formation. In contrast, the distribution of ADAM15 correlates poorly with the localization in cell contacts of one of its proposed ligands, the beta1-integrin. Furthermore, ADAM15 accumulation in cell-cell contacts is preceded by VE-cadherin-mediated adherens junction formation. To investigate the dependence of ADAM15 surface expression on adherens junction formation, we coexpressed VE-cadherin with ADAM15 and an ADAM15 green fluorescence protein (GFP) fusion protein in Chinese hamster ovary cells. VE-cadherin coexpression results in the translocation of ADAM15-GFP to the cell periphery. Analysis of cell surface levels of ADAM15 and ADAM15-GFP, with or without VE-cadherin coexpression, clearly demonstrates that VE-cadherin can drive surface expression of ADAM15. Our data suggest that ADAM15 may be a novel component of adherens junctions and thus could play a role in endothelial functions that are mediated by these cell contacts. |
| |
Keywords: | integrin disintegrin endothelial cell catenin cell–cell contact |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|