首页 | 本学科首页   官方微博 | 高级检索  
     


Membrane interactions of two arginine-rich peptides with different cell internalization capacities
Authors:Walrant Astrid  Vogel Alexander  Correia Isabelle  Lequin Olivier  Olausson Bjoern E S  Desbat Bernard  Sagan Sandrine  Alves Isabel D
Affiliation:UPMC-Paris 06, UMR 7203 CNRS, ENS, Laboratoire des BioMolecules, 4, place Jussieu Paris F-75005, France.
Abstract:Cell penetrating peptides (CPPs) can cross cell membranes in a receptor independent manner and transport cargo molecules inside cells. These peptides can internalize through two independent routes: energy dependent endocytosis and energy independent translocation across the membrane, but the exact mechanisms are still unknown. The interaction of the CPP with different membrane components is certainly a preliminary key point that triggers internalization, such as the interaction with lipids to lead to the translocation process. In this study, we used two arginine-rich peptides, RW9 (RRWWRRWRR-NH(2)), which is a potent CPP, and RL9 (RRLLRRLRR-NH(2)) that, although binding tightly and accumulating on membranes, does not enter into cells. Using a set of experimental and theoretical techniques, we studied the binding, insertion and orientation of the peptides into different model membranes as well as the subsequent membrane reorganization. Herein we show that although the two peptides had rather similar behavior regarding lipid membrane interaction, subtle differences were found concerning the depth of peptide insertion, effect on the lipid chain ordering and kinetics of peptide insertion in the membrane, which altogether might explain their different cell internalization capacities. Molecular dynamics simulation studies show that some peptide molecules flipped their orientation over the course of the simulation such that the hydrophobic residues penetrated deeper in the lipid core region while Arg-residues maintained H-bonds with the lipid headgroups, serving as a molecular hinge in a conformation that appeared to correspond to the equilibrium one.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号