首页 | 本学科首页   官方微博 | 高级检索  
     


Respiratory cycle timing and fast inspiratory discharge rhythms in the adult decerebrate rat
Authors:Marchenko Vitaliy  Granata Antonio R  Cohen Morton I
Affiliation:Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
Abstract:In supracollicular decerebrate paralyzed adult rats, neural respiration was monitored by bilateral phrenic recordings. In the study of respiratory cycle timing, the effects of vagal afferent input (lung inflation) on respiratory phase durations resembled those seen in decerebrate cats. 1) Withholding lung inflation during neural inspiration (I) produced lengthening of I phase duration by 46% (mean, n = 11). 2) Maintaining lung inflation during neural expiration (E) produced lengthening of E phase duration by 112% (mean, n = 4). In the study of fast rhythms in inspiratory discharges, phrenic nerve autospectra and bilateral (left-right) phrenic coherences in 16 rats revealed two types of fast rhythm: 1) high-frequency oscillation (HFO), which had significant coherence peaks (n = 9, range 106-160 Hz, mean 132 Hz); and 2) medium-frequency oscillation (MFO), which had autospectral peaks but no distinct coherence peaks (n = 11, range 46-96 Hz, mean 66 Hz). These rhythms resembled MFOs and HFOs in the decerebrate cat, but the modal frequency range was about twice as large. In addition, these frequency values differed markedly from the 20-40 Hz of the rhythms found in earlier studies in neonatal in vitro preparations; the difference may be due to developmental immaturity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号