首页 | 本学科首页   官方微博 | 高级检索  
   检索      


2-Aminopurine as a fluorescent probe for DNA base flipping by methyltransferases.
Authors:B Holz  S Klimasauskas  S Serva  and E Weinhold
Abstract:DNA base flipping, which was first observed for the C5-cytosine DNA methyltransferase M. Hha I, results in a complete removal of the stacking interactions between the target base and its neighbouring bases. We have investigated whether duplex oligodeoxynucleotides containing the fluorescent base analogue 2-aminopurine can be used to sense DNA base flipping. Using M. Hha I as a paradigm for a base flipping enzyme, we find that the fluorescence intensity of duplex oligodeoxynucleotides containing 2-aminopurine at the target site is dramatically enhanced (54-fold) in the presence of M. Hha I. Duplex oligodeoxynucleotides containing 2-aminopurine adjacent to the target cytosine show little fluorescence increase upon addition of M. Hha I. These results clearly demonstrate that duplex oligodeoxynucleotides containing 2-aminopurine at the target site can serve as fluorescence probes for base flipping. Another enzyme hypothesized to use a base flipping mechanism is the N6-adenine DNA methyltransferase M. Taq I. Addition of M. Taq I to duplex oligodeoxynucleotides bearing 2-aminopurine at the target position, also results in a strongly enhanced fluorescence (13-fold), whereas addition to duplex oligodeoxynucleotides containing 2-aminopurine at the 3'- or 5'-neighbouring position leads only to small fluorescence increases. These results give the first experimental evidence that the adenine-specific DNA methyltransferase M. Taq I also flips its target base.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号