Effective cryoprotection of thylakoid membranes by ATP |
| |
Authors: | Kurt A. Santarius |
| |
Affiliation: | (1) Botanisches Institut der Universität, Universitätsstrasse 1, D-4000 Düsseldorf, Federal Republic of Germany |
| |
Abstract: | Freezing of isolated spinach thylakoids in the presence of NaCl uncoupled photophosphorylation from electron flow and increased the permeability of the membranes to protons. Addition of ATP prior to freezing diminished membrane inactivation. On a molar basis, ATP was at least 100 times more effective in protecting thylakoids from freezing damage than low-molecularweight carbohydrates such as sucrose and glucose. The cryoprotective effectiveness of ATP was increased by Mg2+. In the absence of carbohydrates, preservation of thylakoids during freezing in 100 mM NaCl was saturated at about 1–2 mM ATP, but under these conditions membranes were not fully protected. However, in the presence of small amounts of sugars which did not significantly prevent thylakoid inactivation during freezing, ATP concentrations considerably lower than 0.5 mM caused nearly complete membrane protection. Neither ADP nor AMP could substitute for ATP. These findings indicate that cryoprotection by ATP cannot be explained by a colligative mechanism. It is suggested that ATP acts on the chloroplast coupling factor, either by modifying its conformation or by preventing its release from the membranes. The results are discussed in regard to freezing injury and resistance in vivo.Abbreviations CF1 chloroplast coupling factor - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - PMS phenazine methosulfate - Tris 2-amino-2-(hydroxymethyl)-1,3-propandiol |
| |
Keywords: | ATP Colligative theory Cryoprotection Freezing injury Spinacia (freezing) Thylakoid membrane |
本文献已被 SpringerLink 等数据库收录! |
|