首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanistic and stereochemical studies on the glycine reductase of Clostridium sticklandii.
Authors:G F Barnard  M Akhtar
Abstract:Clostridial glycine reductase multienzyme complex which catalyses the reaction: Glycine + ADP + Pi + 2H leads to Acetate + ATP + NH3 was solubilised and fractionated essentially according to the method of Stadtman T.C. Stadtman (1970) Methods Enzymol. 17A, 956--966] into two components: protein A and 'glycine reductase' fraction. A reconstituted system obtained by combining the two components in the presence of dithiothreitol catalysed the conversion of glycine into acetate concomitant with the phosphorylation of ADP to ATP. Using the reconstituted system, in which the unwanted enzyme activity catalyzing an exchange of the alpha hydrogen atoms of glycine with the protons of the medium had been greatly reduced, it was found that the conversion of (2RS)-2-14C, 2-3H1]glycine (3H/14C = 7.16) into acetate (3H/14C = 7.03) was attended by the retention of both the C-2 hydrogen atoms of glycine. Conversion of (2S)-2-2H1, 2-3H1]glycine and (2R)-2-2H1, 2-3H1]glycine by the reconstituted system gave (2S)-acetate and (2R)-acetate respectively showing that the reductive deamination of glycine occurs through an inversion of configuration. The cumulative information available on the glycine reductase reaction is embodied in a hypothetical mechanism of action for the enzyme.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号