首页 | 本学科首页   官方微博 | 高级检索  
   检索      


RNA-based phylogenetic methods: application to mammalian mitochondrial RNA sequences
Authors:Hudelot Cendrine  Gowri-Shankar Vivek  Jow Howsun  Rattray Magnus  Higgs Paul G
Institution:School of Biological Sciences, University of Manchester, UK.
Abstract:The PHASE software package allows phylogenetic tree construction with a number of evolutionary models designed specifically for use with RNA sequences that have conserved secondary structure. Evolution in the paired regions of RNAs occurs via compensatory substitutions, hence changes on either side of a pair are correlated. Accounting for this correlation is important for phylogenetic inference because it affects the likelihood calculation. In the present study we use the complete set of tRNA and rRNA sequences from 69 complete mammalian mitochondrial genomes. The likelihood calculation uses two evolutionary models simultaneously for different parts of the sequence: a paired-site model for the paired sites and a single-site model for the unpaired sites. We use Bayesian phylogenetic methods and a Markov chain Monte Carlo algorithm is used to obtain the most probable trees and posterior probabilities of clades. The results are well resolved for almost all the important branches on the mammalian tree. They support the arrangement of mammalian orders within the four supra-ordinal clades that have been identified by studies of much larger data sets mainly comprising nuclear genes. Groups such as the hedgehogs and the murid rodents, which have been problematic in previous studies with mitochondrial proteins, appear in their expected position with the other members of their order. Our choice of genes and evolutionary model appears to be more reliable and less subject to biases caused by variation in base composition than previous studies with mitochondrial genomes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号