Abstract: | Galactosyltransferase was irreversibly inactivated upon exposure to ultraviolet light and the rate of inactivation followed apparent first-order kinetics. Significant protection against inactivation was observed in the presence of various combinations of substrates. UDPgalactose and Mn2+ together gave the most protection. Amino acid analyses revealed the loss of 1 mol of tryptophan per mol of galactosyltransferase upon ultraviolet photoinactivation. Further evidence for an essential trypotphan was provided by difference spectra and by inactivation with 2-hydroxy-5-nitrobenzyl bromide and protection against this reagent by Mn2+ and UDPgalactose. The protection by UDPgalactose and Mn2+ was greater than that provided by UDPgalactose alone. Since Mn2+ provided no protection by itself, this suggested that the formation of the galactosyltransferase-Mn2+-UDPgalactose complex caused a conformational change which was responsible for the observed protection of the essential tryptophanyl residue. |