首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The synthesis of pABA: Coupling between the glutamine amidotransferase and aminodeoxychorismate synthase domains of the bifunctional aminodeoxychorismate synthase from Arabidopsis thaliana
Authors:Djeneb Camara  Céline Richefeu-Contesto  Bernadette Gambonnet  Renaud Dumas  Fabrice Rébeillé
Institution:Laboratoire de Physiologie Cellulaire Végétale, UMR5168 CNRS-CEA-INRA-Université Joseph Fourier Grenoble I, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA-Grenoble, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
Abstract:Aminodeoxychorismate (ADC) synthase in plants is a bifunctional enzyme containing glutamine amidotransferase (GAT) and ADC synthase (ADCS) domains. The GAT domain releases NH3 from glutamine and the ADCS domain uses NH3 to aminate chorismate. This enzyme is involved in folate (vitamin B9) biosynthesis. We produced a stable recombinant GAT–ADCS from Arabidopsis. Its kinetic properties were characterized, and activities and coupling of the two domains assessed. Both domains could operate independently, but not at their optimal capacities. When coupled, the activity of one domain modified the catalytic properties of the other. The GAT activity increased in the presence of chorismate, an activation process that probably involved conformational changes. The ADCS catalytic efficiency was 104 fold higher with glutamine than with NH4Cl, indicating that NH3 released from glutamine and used for ADC synthesis did not equilibrate with the external medium. We observed that the GAT activity was always higher than that of ADCS, the excess of NH3 being released in the external medium. In addition, we observed that ADC accumulation retro-inhibited ADCS activity. Altogether, these results indicate that channeling of NH3 between the two domains and/or amination of chorismate are the limiting step of the whole process, and that ADC cannot accumulate.
Keywords:Folate  Vitamins  C1 metabolism  Chorismate  Aminodeoxychorismate biosynthesis  p-Aminobenzoate biosynthesis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号