首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Accumulation and within-seed distribution of iron in common bean and soybean
Authors:JT Moraghan
Institution:1. Department of Soil Science, North Dakota State University, Fargo, ND, 58105, USA
Abstract:The influence of times of applying FeEDDHA on seed yield and Fe accumulation by four common bean (Phaseolus vulgaris L.) and two soybean (Glycine max L.) genotypes grown on a calcareous soil was studied under greenhouse conditions. The soybean genotypes, unlike the common bean genotypes, developed Fe-deficiency chlorosis and responded to application of the chelate. A preplant application of FeEDDHA was more efficacious than a flowering application in increasing seed yield of soybean. In contrast, the flowering application was much more effective than the preplant application for increasing seed Fe concentration Fe] of both species. Percentage of seed Fe located in the seed coat of the common bean genotypes ranged from approximately 5 to 40% and was little affected by FeEDDHA. This within-seed distribution of Fe was correlated with methanol-extractable seed-coat pigments absorbing at 500 nm, presumably anthocyanins, but not with condensed tannins (proanthocyanidins). The soybean genotypes did not accumulate anthocyanins or tannins in the seed coat. Seed of Fe-deficient soybean plants without FeEDDHA had appreciably lower Fe] and had a lower percentage of seed Fe in the seed coat than treated plants. Within-seed distribution of Fe should be considered in plant breeding because of concerns about both human nutrition and early seedling growth. Abbreviations: DTPA – diethylenetrinitrilopentaacetic acid; EDDHA – ethylenediamine di(o-hydroxyphenylacetic acid) acid; SPAD – single photon avalanche diode
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号