首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Soil isotopically exchangeable zinc: A comparison between E and L values
Authors:S Sinaj  A Dubois  E Frossard
Abstract:The objectives of the present paper were: (i) to determine isotopically exchangeable zinc using two isotopic exchange methods (E and L values) in a series of polluted and non-polluted Swiss agricultural soils, and (ii) to evaluate the ability of chemical extraction methods to estimate plant-available soil Zn using isotopic techniques. The surface horizon (0–20 cm) of seven polluted and non-polluted soils representing a wide range in physico-chemical properties and Zn contents were sampled. An isotopic exchange kinetics (IEK) approach was used to assess, in a batch experiment, the isotopically exchangeable Zn content (E value). In order to determine the L values, a pot experiment was carried out with Lolium multiflorum (cv. Axis) in a growth chamber using a 65Zn-isotope dilution technique. Total Zn uptake and the isotopic composition (65Zn/stableZn) were determined in Lolium multiflorum for five successive cuts. The amounts of zinc extracted by different chemicals were compared with L values and regression parameters were estimated. The isotopic composition in soil extracted by DTPA and EDTAAc at the end of the pot experiment was also determined. Results showed that the equation describing the increase of isotopically exchangeable Zn with time could be extrapolated to three months for polluted and non-polluted neutral and acidic soils, and that the results were not different from the amount of isotopically exchangeable Zn experimentally determined with Lolium multiflorum (L value). In alkaline soils however, results suggest that either 65Zn sorption occurred in the batch experiment or that the concentration of Zn in the soil solution had been overestimated, leading to an overestimation of the E value compared to the L values. Furthermore, the specific activities measured in DTPA and EDTA extractions at the end of the pot experiment were significantly different compared to the specific activity of the plant, showing that both these chelating agents extract neither all the available soil Zn nor only the available soil Zn for plants. Abbreviations: C Zn– concentration of Zn in a soil water extract (mg Zn L?1); C Zn?Plant– concentration of Zn in plant shoots (mg Zn kg?1 DM); DTPA – diethylene triamine pentaacetic acid; E 1\min– amount of Zn isotopically exchangeable within one min (mg Zn kg?1 soil); E (t)\exp– amount of Zn isotopically exchangeable after t min derived from experimental results (mg Zn kg?1 soil); E (t)pred– amount of Zn isotopically exchangeable after t min predicted using kinetic parameters derived from a 100 min long isotope exchange kinetic experiment together with C Zn, and ZnHNO3 (mg Zn kg?1 soil); EDTA – ethylene diamine tetraacetic acid; ICP– isotopic composition of Zn in plant shoots; ICDTPA– isotopic composition of Zn in the soil DTPA extract; ICEDTA– isotopic composition of Zn in the soil EDTA extract; ICSE– isotopic composition of Zn in the soil extracts; IEK – isotope exchange kinetics; L value – amount of plant available Zn (mg Zn kg?1 soil); Lolium multiflorum; TEA – Triethanolamine; ZnDTPA– Zn extractable by 0.005 M DTPA + 0.01 M CaCl2 + 0.1 M TEA; ZnEDTA?NH4Ac– Zn extractable by 0.5 M NH4Ac, 0.02 M EDTA; ZnEDTA?Ca(NO3)2– Zn extractable by 0.005 M EDTA, 0.01 M Ca(NO3)2; ZnKCl– Zn extractable by 1 M KCl; ZnCaCl2– Zn extractable by 0.01 M CaCl2; ZnNaNO3– Zn extractable by 0.1 M NaNO3; ZnHNO3– Zn extractable by 2 M HNO3.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号