首页 | 本学科首页   官方微博 | 高级检索  
     


Calcium-dependent catalytic activity of a novel phytase from Bacillus amyloliquefaciens DS11
Authors:Oh B C  Chang B S  Park K H  Ha N C  Kim H K  Oh B H  Oh T K
Affiliation:Microbial Genomic Laboratory, Korea Research Institute of Bioscience and Biotechnology, Yusong, Taejon,
Abstract:The thermostable phytase from Bacillus amyloliquefaciens DS11 hydrolyzes phytate (myo-inositol hexakisphosphate, IP6) to less phosphorylated myo-inositol phosphates in the presence of Ca2+. In this report, we discuss the unique Ca2+-dependent catalytic properties of the phytase and its specific substrate requirement. Initial rate kinetic studies of the phytase indicate that the enzyme activity follows a rapid equilibrium ordered mechanism in which binding of Ca2+ to the active site is necessary for the essential activation of the enzyme. Ca2+ turned out to be also required for the substrate because the phytase is only able to hydrolyze the calcium-phytate complex. In fact, both an excess amount of free Ca2+ and an excess of free phytate, which is not complexed with each other, can act as competitive inhibitors. The Ca2+-dependent catalytic activity of the enzyme was further confirmed, and the critical amino acid residues for the binding of Ca2+ and substrate were identified by site-specific mutagenesis studies. Isothermal titration calorimetry (ITC) was used to understand if the decreased enzymatic activity was related to poor Ca2+ binding. The pH dependence of the Vmax and Vmax/Km consistently supported these observations by demonstrating that the enzyme activity is dependent on the ionization of amino acid residues that are important for the binding of Ca2+ and the substrate. The Ca2+-dependent activation of enzyme and substrate was found to be different from other histidine acid phytases that hydrolyze metal-free phytate.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号