首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A Novel Strategy to Isolate Ubiquitin Conjugates Reveals Wide Role for Ubiquitination during Neural Development
Authors:Maribel Franco  Nicholas T Seyfried  Andrea H Brand  Junmin Peng  Ugo Mayor
Institution:3. CIC Biogune, Bizkaia Teknologi Parkea, 48160 Derio, Spain;5. Department of Human Genetics, Center for Neurodegenerative Diseases, Atlanta, Georgia 30322;6. Wellcome Trust/Cancer Research UK, Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 1QN Cambridge, United Kingdom;8. Department of Genetics, University of Cambridge, CB2 3EH Cambridge, United Kingdom;9. Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
Abstract:Ubiquitination has essential roles in neuronal development and function. Ubiquitin proteomics studies on yeast and HeLa cells have proven very informative, but there still is a gap regarding neuronal tissue-specific ubiquitination. In an organism context, direct evidence for the ubiquitination of neuronal proteins is even scarcer. Here, we report a novel proteomics strategy based on the in vivo biotinylation of ubiquitin to isolate ubiquitin conjugates from the neurons of Drosophila melanogaster embryos. We confidently identified 48 neuronal ubiquitin substrates, none of which was yet known to be ubiquitinated. Earlier proteomics and biochemical studies in non-neuronal cell types had identified orthologs to some of those but not to others. The identification here of novel ubiquitin substrates, those with no known ubiquitinated ortholog, suggests that proteomics studies must be performed on neuronal cells to identify ubiquitination pathways not shared by other cell types. Importantly, several of those newly found neuronal ubiquitin substrates are key players in synaptogenesis. Mass spectrometry results were validated by Western blotting to confirm that those proteins are indeed ubiquitinated in the Drosophila embryonic nervous system and to elucidate whether they are mono- or polyubiquitinated. In addition to the ubiquitin substrates, we also identified the ubiquitin carriers that are active during synaptogenesis. Identifying endogenously ubiquitinated proteins in specific cell types, at specific developmental stages, and within the context of a living organism will allow understanding how the tissue-specific function of those proteins is regulated by the ubiquitin system.Posttranslational modification of proteins by ubiquitin is involved in a wide range of cellular processes (1). Ubiquitination is linked to the turnover of an ever growing number of proteins; it regulates protein trafficking and is also widely used to transiently facilitate protein-protein interactions (2, 3). As the number of known ubiquitinated proteins keeps growing, the focus is turning toward identifying when, where, and how those proteins are ubiquitinated in vivo with the aim of understanding how protein function is being regulated within the context of a whole organism. The ubiquitin pathway is essential for brain development and function, and its failure is associated with a number of neurodegenerative diseases, including Parkinson and Alzheimer diseases (46). Ubiquitin conjugation is carried out by the sequential action of ubiquitin-activating (E1), -conjugating (E2), and -ligating (E3) enzymes and can be reversed by deubiquitinating enzyme (DUB)1 proteases. The involvement of a number of those enzymes in synaptogenesis has been documented in several model systems (712). In Drosophila, for example, synaptogenesis is dependent on the E3 ligase Highwire and on the DUB fat facets (13). A few proteins involved in synaptogenesis have been shown to be ubiquitin substrates, including the postsynaptic proteins Shank, GKAP, and AKAP79/150 in cultured neurons (14) and the Caenorhabditis elegans synaptic protein DLK-1 kinase, which was shown to be ubiquitinated when overexpressed in HEK293T kidney cells (9). Most neuronal targets of the ubiquitin pathway, however, remain undiscovered. Yeast and HeLa cell-based proteomics approaches have failed to provide significant insights into the neuronal mechanisms regulated by ubiquitination. With the exception of a polyubiquitin affinity-based purification that successfully identified by Western blotting three ubiquitin substrates in cultured neurons (14), no proteomics approach has been described that can identify ubiquitinated neuronal proteins. Because neuronal function and activity are highly context-dependent, rather than working on neuronal culture, we have aimed to identify which proteins are ubiquitinated in vivo within the neurons of a living organism.Herein, we describe a novel strategy for the efficient isolation of neuronal ubiquitin conjugates from flies. The approach is based on the in vivo biotinylation of ubiquitin by ectopically expressing the Escherichia coli BirA enzyme to attach a biotin molecule to a specific BirA recognition sequence (15, 16) added at the N terminus of each ubiquitin chain. With the purpose of isolating ubiquitin conjugates uniquely from the nervous system of Drosophila melanogaster, we used the GAL4/UAS system for tissue-targeted expression (17). To increase the biotinylation efficiency, we took advantage of the processing activity of endogenous DUBs to digest a linear polypeptide precursor containing six copies of the tagged ubiquitin and the BirA enzyme, which are then present in the same cellular microenvironment. Because of the strength and the specificity of the avidin-biotin interaction, we were able to isolate and enrich the neuronal ubiquitinated proteins from a multicellular organism up to levels not achieved previously by any other approach. This allowed us to identify by mass spectrometry those neuronal proteins that are ubiquitinated and to resolve by Western blotting whether they are mono- or polyubiquitinated. This was achieved in the absence of proteasome inhibitors; therefore, physiological ubiquitination levels are reported. We focused on identifying the proteins that are ubiquitinated within the neurons in the period from neurite outgrowth and axonal pathfinding to target recognition and synapse formation (18). For that purpose, we applied our strategy on postmitotic neurons during embryonic stages 13–17 (19), a 12-h period during which embryos undergo synaptogenesis. Our strategy could be used to isolate ubiquitin conjugates from other tissues from the fruit flies, from different developmental stages, and in different mutant backgrounds, and it is likely to be applicable to other model organisms.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号