IFN-gamma mediates enhancement of HIV replication in astrocytes by inducing an antagonist of the beta-catenin pathway (DKK1) in a STAT 3-dependent manner |
| |
Authors: | Li Wei Henderson Lisa J Major Eugene O Al-Harthi Lena |
| |
Affiliation: | Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA. |
| |
Abstract: | Typically, IFN-γ is an antiviral cytokine that inhibits the replication of many viruses, including HIV. However, in the CNS, IFN-γ induces HIV-productive replication in astrocytes. Although astrocytes in vitro are refractory to HIV replication, recent in vivo evidence demonstrated that astrocytes are infected by HIV, and their degree of infection is correlated with proximity to activated macrophages/microglia. The ability of IFN-γ to induce HIV replication in astrocytes suggests that the environmental milieu is critical in regulating the permissiveness of astrocytes to HIV infection. We evaluated the mechanism by which IFN-γ relieves restricted HIV replication in astrocytes. We demonstrate that although astrocytes have robust endogenous β-catenin signaling, a pathway that is a potent inhibitor of HIV replication, IFN-γ diminished β-catenin signaling in astrocytes by 40%, as evaluated by both active β-catenin protein expression and β-catenin-mediated T cell factor/lymphoid enhancer reporter (TOPflash) activity. Further, IFN-γ-mediated inhibition of β-catenin signaling was dependent on its ability to induce an antagonist of the β-catenin signaling pathway, Dickkopf-related protein 1, in a STAT 3-dependent manner. Inhibition of STAT3 and Dickkopf-related protein 1 abrogated the ability of IFN-γ to enhance HIV replication in astrocytes. These data demonstrated that IFN-γ induces HIV replication in astrocytes by antagonizing the β-catenin pathway. To our knowledge, this is the first report to point to an intricate cross-talk between IFN-γ signaling and β-catenin signaling that may have biologic and virologic effects on HIV outcome in the CNS, as well as on broader processes where the two pathways interface. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|