首页 | 本学科首页   官方微博 | 高级检索  
   检索      

镉在黑藻叶细胞中的亚显微定位分布及毒害效应分析
摘    要:

关 键 词:黑藻  毒害  光合速率  呼吸速率  吸收  细胞壁  浓度  显微  含量  体内

Distribution and toxicity of cadmium in Hydrilla verticillata (L.f.) Royle]
Authors:Qin Song Xu  Guo Xin Shi  Yao Ming Zhou  Guo Rong Wu  Xue Wang
Institution:College of Life Science, Nanjing Normal University, Nanjing 210097.
Abstract:Aquatic plants are known to accumulate and bioconcentrate heavy metals. In this study, aquatic vascular plant Hydrilla verticillata (L.f.) Royle was cultivated in water containing elevated concentrations of cadmium (up to 10 mg/L) for 7 d, the accumulation, subcellular distribution, ultrastructural localization, chemical form, toxic effects on mineral nutrient absorption of cadmium, photosynthesis rate and respiration rate were studied. It was found that H. verticillata fronds was able to accumulate cadmium, the bioconcentration factor was 193-307; subcellular fraction analysis revealed that cadmium major accumulated in cell wall (61.66%-52.00%) with decrease trends, the content of Cd enhanced in soluble fraction and remained stable in organelles, with the augment of pollutant concentration. The Cd levels occurred in different parts of leaf cell with the following sequence: cell wall > soluble fraction > organelles. Ultrastructural localization of cadmium with sulfide-silver method showed that Cd appeared in cell wall, chloroplast, nucleus and vacuole. Sequential extraction indicated that the ratio of different cadmium chemical form was different markedly, of which NaCl extractable Cd was predominated as compared with the other 5 forms; which could be seen in the following order: F(NaCl) > F(HAc) >F(Water) > F(Ethanol) > F(HCl) > F(Residue). The mineral nutrient absorption was also affected by cadmium stress, it increased the absorption of Ca, Mn, Cu, and Fe; but reduced that of P and K. Cd had a strong inhibitive effect on photosynthesis rate and respiration rate. The results suggested that the toxic symptoms of plant showed an evident correlation between dose and effect; the ultrastructural damage was closely related to the distribution of Cd. The conclusion could be reached that the death of plant was resulted from destruction of structure foundation of physiological function, unbalance of ion equilibrium and disorder of physiological metabolism.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号