首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of surfactant adsorption and biodegradability on the distribution of bacteria between sediments and water in a freshwater microcosm.
Authors:J R Marchesi   N J Russell   G F White     W A House
Abstract:A microcosm containing resuspended river sediment was used to investigate the effect of anionic surfactants on the distribution of bacteria between planktonic and attached populations. Freshwater river sediment containing viable bacteria was preequilibrated in the microcosm, which was subsequently supplemented with biodegradable or recalcitrant surfactants and a non-surface-active carbon and energy source. Population dynamics of both free-living and attached bacteria were measured by epifluorescence microscopy with simultaneous analysis of the residual solution concentration of the xenobiotic carbon source. The addition of the readily biodegradable anionic surfactants sodium decyl sulfate and sodium dodecyl sulfate in separate experiments caused an increase in the number of attached bacteria and a concomitant decrease in the number of free-living bacteria. As biodegradation of the surfactants progressed, these trends reversed and the bacterial populations had returned to their preaddition values by the time when biodegradation was completed. In contrast, sodium tetradecyl sulfate or sodium dodecane sulfonate did not stimulate bacterial association with sediment, nor were they biodegraded in the microcosm. Sodium pyruvate, a non-surface-active carbon and energy source, was readily utilized but caused no bacterial attachment to the sediment. These results indicate that for an anionic surfactant to induce bacterial attachment to river sediment, it must be biodegradable. The bacterial attachment to the sediment appears to be reversible and may be dependent on the accumulation of the surfactant at the surface or as a result of alteration of the surface free energies.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号