首页 | 本学科首页   官方微博 | 高级检索  
     


Evolution of virulence driven by predator-prey interaction: Possible consequences for population dynamics
Authors:Morozov A Yu  Adamson M W
Affiliation:Department of Mathematics, University of Leicester, LE1 7RH, UK
Abstract:The evolution of pathogen virulence in natural populations has conventionally been considered as a result of selection caused by the interactions of the host with its pathogen(s). The host population, however, is generally embedded in complex trophic interactions with other populations in the community, in particular, intensive predation on the infected host can increase its mortality, and this can affect the course of virulence evolution. Reciprocally, in the long run, the evolution of virulence within an infected host can affect the patterns of population dynamics of a predator consuming the host (e.g. resulting in large amplitude oscillations, causing a severe drop in the population size, etc.). Surprisingly, neither the effect of predation on the evolution of virulence within a host, nor the influence of the evolution of virulence upon the consumer's dynamics has been addressed in the literature yet. In this paper, we consider a classical S-I ecoepidemiological model in which the infected host is consumed by a predator. We are particularly interested in the evolutionarily stable virulence of the pathogen in the model and its dependence upon ecologically relevant parameters. We show that predation can prominently shift the evolutionarily stable virulence towards more severe strains as compared to the same system without predation. We demonstrate that the evolution of virulence can result in a succession of dynamical regimes and can even lead to the extinction of the predator in the long run. The presence of a predator can indirectly affect the evolution within its prey since the evolutionarily stable virulence becomes a function of the prey growth rate, which would not be the case in a predator-free system. We find that the evolutionarily stable virulence largely depends on the carrying capacity K of the prey in a non-monotonous way. The model also predicts that in an eutrophic environment the shift of virulence towards evolutionarily stable benign strains can cause demographically stochastic evolutionary suicide, resulting in the extinction of both species, thus artificially maintaining severe strains of pathogen can enhance the persistence of both species.
Keywords:Evolution of virulence   Ecoepidemiology   Trade-off   Invasion fitness   Infection
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号