首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ca2+/calmodulin-dependent cytochrome c reductase activity of brain nitric oxide synthase.
Authors:P Klatt  B Heinzel  M John  M Kastner  E B?hme  B Mayer
Institution:Institute of Pharmacology, Free University of Berlin, Germany.
Abstract:Nitric oxide acts as a widespread signal molecule and represents the endogenous activator of soluble guanylyl cyclase. In endothelial cells and brain tissue, NO is enzymatically formed from L-arginine by Ca2+/calmodulin-regulated NO synthases which require NADPH, tetrahydrobiopterin, and molecular oxygen as cofactors. Here we show that purified brain NO synthase binds to cytochrome c-agarose and exhibits superoxide dismutase-insensitive cytochrome c reductase activity with a Vmax of 10.2 mumol x mg-1 x min-1 and a Km of 34.1 microM. Cytochrome c reduction was largely dependent on Ca2+/calmodulin and cochromatographed with L-citrulline formation during gel filtration. When reconstituted with cytochrome P450, NO synthase induced a moderate Ca(2+)-independent hydroxylation of N-ethylmorphine. NO synthase also reduced the artificial electron acceptors nitro blue tetrazolium and 2,6-dichlorophenolindophenol. Cytochrome c, 2,6-dichlorophenolindophenol, and nitro blue tetrazolium inhibited NO synthase activity determined as formation of L-citrulline from 0.1 mM L-arginine in a concentration-dependent manner with half-maximal effects at 166, 41, and 7.3 microM, respectively. These results suggest that NO synthase may participate in cellular electron transfer processes and that a variety of electron-acceptors may interfere with NO formation due to the broad substrate specificity of the reductase domain of NO synthase.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号