首页 | 本学科首页   官方微博 | 高级检索  
   检索      


On the coordination of inhibitors to the metal ion of carboxypeptidase A. A 113Cd and 31P NMR study
Authors:P Gettins
Abstract:113Cd and 31P NMR have been used to investigate the interactions of inhibitors with the metal ion of bovine carboxypeptidase A, using 113Cd as a replacement for the native zinc atom. In the absence of inhibitor and over the pH range 6-9, no 113Cd resonance is visible at room temperature. Upon lowering the temperature to 270 K, however, a broad resonance can be seen at 120 ppm. These results are discussed in terms of possible sources for this resonance modulation. Binding of low molecular weight inhibitors containing potential metal-coordinating moieties results in the appearance of a sharp 113Cd resonance. These inhibitors all bind to the metal ion, a fact which is reflected in the chemical shift of the cadmium resonance and, for L-phenylalanine phosphoramidate phenyl ester, by two-bond 113Cd-31P spin-spin coupling of 30 Hz in the 31P resonance of the bound inhibitor. For inhibitors that coordinate to the metal ion via oxygen, the 113Cd chemical shift is in the range 127-137 ppm, whereas for sulfur coordination there is a downfield shift of approximately 210 ppm. The complexes of 113Cd-substituted carboxypeptidase A with the D and L isomers of thiolactic acid are distinguished by a difference of 11 ppm in the chemical shift of their cadmium resonances. The enzyme complex formed with the macromolecular inhibitor from potatoes, which fills the S1 and S2 subsites, shows one or possibly two closely spaced broad 113Cd resonances. Both the chemical shift and the line width of the 113Cd resonances of the 113Cd]carboxypeptidase-inhibitor complexes give valuable structural and dynamic information about the enzyme active site.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号