Supplementary ultraviolet-B irradiation reveals differences in stress responses between Arabidopsis thaliana ecotypes |
| |
Authors: | Kalbina Irina Strid Ake |
| |
Affiliation: | Department of Science and Orebro Life Science Center, Orebro University, S-70182 Orebro, Sweden. |
| |
Abstract: | Irradiation of Arabidopsis thaliana ecotypes C24, Wassilewskija (Ws) and Columbia-0 (Col-0) with supplementary ultraviolet-A+B (UV-A+B) radiation revealed ecotype-specific differences in expression of the gene for the pathogenesis-related protein PR-5. C24 showed an increased expression level of PR-5 (5- and 20-fold higher compared with Col-0 and Ws, respectively). Expression of other molecular markers such as CHS (encoding chalcone synthase), MEB5.2 [encoding a gene strongly up-regulated by ultraviolet-B (UV-B)] and PYROA [encoding a pyridoxine (Vitamin B6) biosynthesis enzyme] only showed slight differences between ecotypes. Oxidative stress during UVA+B exposure was monitored by staining for H2O2. This analysis also revealed important ecotype-specific differences. 'H2O2 hot spots' were found in C24, whereas an even distribution of H2O2 was found in Ws and Col-0. Necrotic lesions also appeared on C24 leaves after prolonged UV-B exposure. There was a reverse correlation between the H2O2 steady-state concentration and the PR-5 gene expression; Ws showed the highest level of H2O2 accumulation but the lowest expression level of the PR-5 gene. Furthermore, application of paraquat on the rosettes led to similar PR-5 expression and H2O2 accumulation patterns as were found after UV-A+B irradiation. The observed ecotypic differences were also reflected in a statistically significant UV-B-dependent decrease in biomass, rosette size and leaf area for Ws, but not for C24 and Col-0. Our results show that a significant ecotype-specific genetic variability in general UV-B responses in Arabidopsis exists. Moreover, the signal transduction or gene regulation pathway for PR-5 differs from the other molecular markers used in this study. |
| |
Keywords: | Arabidopsis ecotype differences gene expression hydrogen peroxide molecular markers paraquat signal transduction ultraviolet‐B radiation |
本文献已被 PubMed 等数据库收录! |
|