首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Detecting genome wide haplotype sharing using SNP or microsatellite haplotype data
Authors:Melanie Bahlo  Jim Stankovich  Terence P Speed  Justin P Rubio  Rachel K Burfoot  Simon J Foote
Institution:(1) The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, 3050 Parkville, VIC, Australia;(2) University of California, Berkeley, CA, USA;(3) The Howard Florey Institute, Parkville, VIC, Australia;(4) The Menzies Research Institute, Hobart, TAS, Australia
Abstract:Genome wide association studies using high throughput technology are already being conducted despite the significant hurdles that need to be overcome (Nat Rev Genet 6:95–108, 2005; Nat Rev Genet 6:109–118, 2005). Methods for detecting haplotype association signals in genome wide haplotype datasets are as yet very limited. Much methodological research has already been devoted to linkage disequilibrium (LD) fine mapping where the focus is the identification of the disease locus rather than the detection of a disease signal. Applications of these approaches to genome wide scanning are limited by the strong model assumptions of the sharing process, which lead to computational complexity. We describe a new algorithm for the initial identification of disease susceptibility loci in genome wide haplotype association studies. Excess sharing of ancestral haplotypes, which indicates the presence of a disease locus, is detected with a simple, easy to interpret, χ 2 based statistic. The method allows genome wide scanning for qualitative traits within reasonable computational timeframes and can serve as a first pass analysis prior to the usage of likelihood based methods, providing candidate regions and inferred susceptibility haplotypes. Our method makes no assumptions regarding the population history or the pattern of background LD. Statistical significance is evaluated with permutation tests. The method is illustrated on simulated and real data where it is applied to simple (cystic fibrosis) and complex disease (multiple sclerosis) examples. The statistic has low type I error and greater power to map disease loci over conventional single marker tests for low to moderate levels of LD.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号