首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Genetic control of heat resistance and thermotolerance by recA and uvrA in E. coli K12
Authors:N Grecz  R Jaw  T J McGarry
Abstract:Several recA and uvrA derivatives of E. coli K12 AB1157 develop a transient increase in heat resistance, i.e. induced thermotolerance after a brief exposure to 43.5 degrees C (less than 1 h). Thermotolerance was identified from the appearance of an inflection in the survival curve or from the loss of heat resistance in the presence of chloramphenicol (CAM) or rifampicin. Heat resistance and induced thermotolerance were enhanced by recA and uvrA gene functions and their contribution was roughly as follows: AB1157 (recA+ uvrA+) greater than AB2463 (recA- uvrA+) greater than AB1886 (recA+ uvrA-) greater than AB2480 (recA- uvrA-). In heat resistance, uvrA and recA contributed approximately equally and their effects were additive. Induced thermotolerance developed sooner and was maintained at a higher level in the presence of uvrA as compared with recA. Since uvrA-dependent excision repair is scheduled prior to recA-dependent (postreplication) repair, induction of thermotolerance may be linked to DNA repair. Although recA and uvrA play a distinct role, they are not essential, and thermotolerance can develop in the absence of either one or both of these gene functions. Furthermore, since thermotolerance can be induced in recA mutants (AB2463 and AB2480), its biochemical pathway must be different from that of the recA-dependent SOS system.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号