首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Plumage microbiota covaries with the major histocompatibility complex in blue petrels
Authors:Sarah Leclaire  Maria Strandh  Gaia Dell&#x;Ariccia  Marianne Gabirot  Helena Westerdahl  Francesco Bonadonna
Institution:Sarah Leclaire,Maria Strandh,Gaia Dell’Ariccia,Marianne Gabirot,Helena Westerdahl,Francesco Bonadonna
Abstract:To increase fitness, a wide range of vertebrates preferentially mate with partners that are dissimilar at the major histocompatibility complex (MHC) or that have high MHC diversity. Although MHC often can be assessed through olfactory cues, the mechanism by which MHC genes influence odour remains largely unclear. MHC class IIB molecules, which enable recognition and elimination of extracellular bacteria, have been suggested to influence odour indirectly by shaping odour‐producing microbiota, i.e. bacterial communities. However, there is little evidence of the predicted covariation between an animal's MHC genotype and its bacterial communities in scent‐producing body surfaces. Here, using high‐throughput sequencing, we tested the covariation between MHC class IIB genotypes and feather microbiota in the blue petrel (Halobaena caerulea), a seabird with highly developed olfaction that has been suggested to rely on oduor cues during an MHC‐based mate choice. First, we show that individuals with similar MHC class IIB profiles also have similar bacterial assemblages in their feathers. Then, we show that individuals with high MHC diversity have less diverse feather microbiota and also a reduced abundance of a bacterium of the genus Arsenophonus, a genus in which some species are symbionts of avian ectoparasites. Our results, showing that feather microbiota covary with MHC, are consistent with the hypothesis that individual MHC genotype may shape the semiochemical‐producing microbiota in birds.
Keywords:bacteria  feathers  MHC  microbiome  seabirds  uropygial gland
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号