Abstract: | 1. Maternal provisioning can reduce offspring vulnerability to predators by promoting offspring growth and eliciting of antipredator behaviours. Mothers perceiving predation risk may improve offspring survival if producing larger, higher‐quality offspring. However, empirical evidence suggests that offspring quality is often reduced, probably reflecting predator‐induced physiological costs, or a selfish maternal strategy aimed at producing more offspring by sacrificing their quality. While perception and impact of predators can vary across the prey's life stage, a majority of studies have focused on understanding how reproductive allocation decisions are influenced by the risk of predation during adulthood. 2. In this study, Leptinotarsa decemlineata beetles were used to examine if the risk of predation during the larval stage: (i) impacts the mother's physiological condition, including body mass and metabolic rate; and (ii) alters maternal allocation of reproductive resources to offspring quantity versus quality. 3. Results revealed that L. decemlineata mothers responded to perceived predation risk by producing clutches with fewer but larger eggs, thus increasing offspring provisioning. Surprisingly, while females that had faced predation risk as larva emerged with a similar body mass to control females, they exhibited lower metabolic rates. 4. Although predation risk in L. decemlineata larvae is known to impair their ability to acquire and maintain energy resources, adult females appeared to ameliorate such costs by improving their metabolic efficiency and by allocating more of their limited reproductive resources to produce fewer but better‐quality offspring. |