首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Lipid droplet-mitochondria coupling via perilipin 5 augments respiratory capacity but is dispensable for FA oxidation
Authors:Benedikt Kien  Stephanie Kolleritsch  Natalia Kunowska  Christoph Heier  Gabriel Chalhoub  Anna Tilp  Heimo Wolinski  Ulrich Stelzl  Guenter Haemmerle
Institution:1. Institute of Molecular Biosciences, University of Graz, Graz, Austria;2. Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria;3. BioTechMed-Graz, University of Graz, Graz University of Technology and Medical University of Graz, Graz, Austria;4. Field of Excellence BioHealth, University of Graz, Graz, Austria
Abstract:Disturbances in lipid homeostasis can cause mitochondrial dysfunction and lipotoxicity. Perilipin 5 (PLIN5) decorates intracellular lipid droplets (LDs) in oxidative tissues and controls triacylglycerol (TG) turnover via its interactions with adipose triglyceride lipase and the adipose triglyceride lipase coactivator, comparative gene identification-58. Furthermore, PLIN5 anchors mitochondria to the LD membrane via the outermost part of the carboxyl terminus. However, the role of this LD-mitochondria coupling (LDMC) in cellular energy catabolism is less established. In this study, we investigated the impact of PLIN5-mediated LDMC in comparison to disrupted LDMC on cellular TG homeostasis, FA oxidation, mitochondrial respiration, and protein interaction. To do so, we established PLIN5 mutants deficient in LDMC whilst maintaining normal interactions with key lipolytic players. Radiotracer studies with cell lines stably overexpressing wild-type or truncated PLIN5 revealed that LDMC has no significant impact on FA esterification upon lipid loading or TG catabolism during stimulated lipolysis. Moreover, we demonstrated that LDMC exerts a minor if any role in mitochondrial FA oxidation. In contrast, LDMC significantly improved the mitochondrial respiratory capacity and metabolic flexibility of lipid-challenged cardiomyocytes, which was corroborated by LDMC-dependent interactions of PLIN5 with mitochondrial proteins involved in mitochondrial respiration, dynamics, and cristae organization. Taken together, this study suggests that PLIN5 preserves mitochondrial function by adjusting FA supply via the regulation of TG hydrolysis and that LDMC is a vital part of mitochondrial integrity.
Keywords:PLIN5  lipid droplets  lipolysis  mitochondrial respiration  FA oxidation  lipid droplet-mitochondria coupling  adipose-triglyceride lipase  comparative gene identification-58  lipotoxicity  cardiovascular disease  β-Gal"}  {"#name":"keyword"  "$":{"id":"kwrd0065"}  "$$":[{"#name":"text"  "_":"β-galactosidase  ASM"}  {"#name":"keyword"  "$":{"id":"kwrd0075"}  "$$":[{"#name":"text"  "_":"acid-soluble metabolite  ATGL"}  {"#name":"keyword"  "$":{"id":"kwrd0085"}  "$$":[{"#name":"text"  "_":"adipose triglyceride lipase  BAT"}  {"#name":"keyword"  "$":{"id":"kwrd0095"}  "$$":[{"#name":"text"  "_":"brown adipose tissue  CGI-58"}  {"#name":"keyword"  "$":{"id":"kwrd0105"}  "$$":[{"#name":"text"  "_":"comparative gene identification-58  DR"}  {"#name":"keyword"  "$":{"id":"kwrd0115"}  "$$":[{"#name":"text"  "_":"Deep Red  ETC"}  {"#name":"keyword"  "$":{"id":"kwrd0125"}  "$$":[{"#name":"text"  "_":"electron transport chain  EYFP"}  {"#name":"keyword"  "$":{"id":"kwrd0135"}  "$$":[{"#name":"text"  "_":"enhanced yellow fluorescent protein  IBMX"}  {"#name":"keyword"  "$":{"id":"kwrd0145"}  "$$":[{"#name":"text"  "_":"3-isobutyl-1-methylxanthine  IP"}  {"#name":"keyword"  "$":{"id":"kwrd0155"}  "$$":[{"#name":"text"  "_":"immunoprecipitation  LD"}  {"#name":"keyword"  "$":{"id":"kwrd0165"}  "$$":[{"#name":"text"  "_":"lipid droplet  LDMC"}  {"#name":"keyword"  "$":{"id":"kwrd0175"}  "$$":[{"#name":"text"  "_":"LD-mitochondria coupling  OA"}  {"#name":"keyword"  "$":{"id":"kwrd0185"}  "$$":[{"#name":"text"  "_":"oleic acid  OCR"}  {"#name":"keyword"  "$":{"id":"kwrd0195"}  "$$":[{"#name":"text"  "_":"oxygen consumption rate  OXPHOS"}  {"#name":"keyword"  "$":{"id":"kwrd0205"}  "$$":[{"#name":"text"  "_":"oxidative phosphorylation  PA"}  {"#name":"keyword"  "$":{"id":"kwrd0215"}  "$$":[{"#name":"text"  "_":"palmitic acid  PGC-1α"}  {"#name":"keyword"  "$":{"id":"kwrd0225"}  "$$":[{"#name":"text"  "_":"peroxisome proliferator-activated receptor γ coactivator 1 alpha  PLIN5"}  {"#name":"keyword"  "$":{"id":"kwrd0235"}  "$$":[{"#name":"text"  "_":"perilipin 5  PKA"}  {"#name":"keyword"  "$":{"id":"kwrd0245"}  "$$":[{"#name":"text"  "_":"protein kinase A  TG"}  {"#name":"keyword"  "$":{"id":"kwrd0255"}  "$$":[{"#name":"text"  "_":"triacylglycerol
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号