首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Acyl-Proteome of Syntrophus aciditrophicus Reveals Metabolic Relationships in Benzoate Degradation
Authors:John M Muroski  Janine Y Fu  Hong Hanh Nguyen  Neil Q Wofford  Housna Mouttaki  Kimberly L James  Michael J McInerney  Robert P Gunsalus  Joseph A Loo  Rachel R Ogorzalek Loo
Institution:1. Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA;2. TRANSMED Co Ltd, Ho Chi Minh City, Vietnam;3. Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA;4. Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA;5. UCLA-DOE Institute, University of California, Los Angeles, California, USA;6. UCLA Molecular Biology Institute, University of California, Los Angeles, California, USA;7. Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
Abstract:Syntrophus aciditrophicus is a model syntrophic bacterium that degrades fatty and aromatic acids into acetate, CO2, formate, and H2 that are utilized by methanogens and other hydrogen-consuming microbes. S. aciditrophicus benzoate degradation proceeds by a multistep pathway with many intermediate reactive acyl-coenzyme A species (RACS) that can potentially Nε-acylate lysine residues. Herein, we describe the identification and characterization of acyl-lysine modifications that correspond to RACS in the benzoate degradation pathway. The amounts of modified peptides are sufficient to analyze the post-translational modifications without antibody enrichment, enabling a range of acylations located, presumably, on the most extensively acylated proteins throughout the proteome to be studied. Seven types of acyl modifications were identified, six of which correspond directly to RACS that are intermediates in the benzoate degradation pathway including 3-hydroxypimeloylation, a modification first identified in this system. Indeed, benzoate-degrading enzymes are heavily represented among the acylated proteins. A total of 125 sites were identified in 60 proteins. Functional deacylase enzymes are present in the proteome, indicating a potential regulatory system/mechanism by which S. aciditrophicus modulates acylation. Uniquely, Nε-acyl-lysine RACS are highly abundant in these syntrophic bacteria, raising the compelling possibility that post-translational modifications modulate benzoate degradation in this and potentially other, syntrophic bacteria. Our results outline candidates for further study of how acylations impact syntrophic consortia.
Keywords:lysine acylation  syntrophs  sirtuins  2D-PAGE"}  {"#name":"keyword"  "$":{"id":"kwrd0035"}  "$$":[{"#name":"text"  "_":"two-dimensional polyacrylamide gel electrophoresis  ABC"}  {"#name":"keyword"  "$":{"id":"kwrd0045"}  "$$":[{"#name":"text"  "_":"ammonium bicarbonate  ATP"}  {"#name":"keyword"  "$":{"id":"kwrd0055"}  "$$":[{"#name":"text"  "_":"adenosine triphosphate  BCL"}  {"#name":"keyword"  "$":{"id":"kwrd0065"}  "$$":[{"#name":"text"  "_":"benzoate-CoA ligase  BLAST"}  {"#name":"keyword"  "$":{"id":"kwrd0075"}  "$$":[{"#name":"text"  "_":"Basic Local Alignment Search Tool  CoA"}  {"#name":"keyword"  "$":{"id":"kwrd0085"}  "$$":[{"#name":"text"  "_":"Coenzyme A  GO"}  {"#name":"keyword"  "$":{"id":"kwrd0095"}  "$$":[{"#name":"text"  "_":"Gene Ontology  KEGG"}  {"#name":"keyword"  "$":{"id":"kwrd0105"}  "$$":[{"#name":"text"  "_":"Kyoto Encyclopedia of Genes and Genomes  MALDI"}  {"#name":"keyword"  "$":{"id":"kwrd0115"}  "$$":[{"#name":"text"  "_":"matrix-assisted laser desorption/ionization  PPI"}  {"#name":"keyword"  "$":{"id":"kwrd0125"}  "$$":[{"#name":"text"  "_":"protein–protein interaction  PTM"}  {"#name":"keyword"  "$":{"id":"kwrd0135"}  "$$":[{"#name":"text"  "_":"post-translational modification  RACS"}  {"#name":"keyword"  "$":{"id":"kwrd0145"}  "$$":[{"#name":"text"  "_":"reactive acyl-coenzyme A species
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号