首页 | 本学科首页   官方微博 | 高级检索  
     


M3 Muscarinic Receptor-Mediated Enhancement of NMDA-Evoked Adenosine Release in Rat Cortical Slices In Vitro
Authors:Kazue Semba   Thomas D. White
Affiliation:Departments of Anatomy and Neurobiology, and; Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
Abstract:Abstract: Acetylcholine plays an important role in cortical arousal. Adenosine is released during increased metabolism and has been suggested to be a sleep-promoting factor. To understand the interaction of acetylcholine and adenosine in regulating cortical excitability, we examined the effect of carbachol on NMDA-evoked adenosine release and identified the muscarinic receptor subtype that mediated this effect in adult rat cortical slices in vitro. Carbachol (to 300 µ M ) alone did not affect the basal release of adenosine. However, carbachol (100 µ M ) induced a 253% increase in NMDA (20 µ M )-evoked adenosine release in the presence of Mg2+. In the absence of Mg2+, carbachol's potentiating effect was less (60% increase). The nonselective muscarinic antagonist atropine (1.5 µ M ) blocked the facilitatory effect of carbachol on NMDA-evoked adenosine release, and this was mimicked by the M3-selective antagonist 4-diphenylacetoxy- N -methylpiperidine (1 µ M ). Neither an M1-selective dose of pirenzepine (50 n M ) nor the M2-selective antagonist methoctramine (1 µ M ) affected carbachol's action on NMDA-evoked adenosine release. Carbachol had no effect on adenosine release evoked by α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA). These results suggest that acetylcholine does not affect basal adenosine release but enhances NMDA receptor-mediated evoked adenosine release by acting at M3 receptors in the cortex. This interaction may have a role in regulating cortical neuronal excitability on a long-term basis.
Keywords:Adenosine    Muscarinic    Acetylcholine    NMDA    Glutamate    Cortex
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号