首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Conformational investigation of alpha,beta-dehydropeptides. N-acetyl-(E)-dehydrophenylalanine N'-methylamide: conformational properties from infrared and theoretical studies, part XIV.
Authors:Ma&#x;gorzata A Broda  Dawid Siod&#x;ak  Barbara Rzeszotarska
Institution:Institute of Chemistry, University of Opole, 45-052 Opole, Poland.
Abstract:N-Acetyl-(E)-dehydrophenylalanine N'-methylamide Ac-(E)-DeltaPhe-NHMe], one of a few representative (E)-alpha,beta-dehydroamino acids, was studied by FTIR in dichloromethane and acetonitrile. To support spectroscopic interpretations and to gain some deeper insight into the Ac-(E)-DeltaPhe-NHMe molecule, the Ramachandran potential energy surface was calculated by the B3LYP/6-31G*//HF/3-21G method and the conformers localized were fully optimized at the B3LYP/6-31 + G** level. The spectra and calculations were compared with those of the related molecules Ac-DeltaAla-NHMe and Ac-(Z)-DeltaPhe-NHMe. The title compound assumes two conformational states in equilibrium in dichloromethane solution with a predominance of the extended conformer E. The Ac-(E)-DeltaPhe-NHMe spectrum is like that of Ac-DeltaAla-NHMe, particularly in the region of bands AI and AII, and unlike that of Ac-(Z)-DeltaPhe-NHMe. The positions of bands AI and II together with the nu(s)(N1--H1) band proves that the conformers E of both DeltaAla and (E)-DeltaPhe compounds are stabilized by the quite strong C5 hydrogen bonds N1--H1...O2. The same conclusion is drawn from the Ramachandran diagrams. The conformers E of both compounds are placed in the global minima and the gaps in energy order between them and the second conformer are large. The conformers E of DeltaAla and (E)-DeltaPhe, apart from the N1--H1...O2 hydrogen bond, show the Cbeta--H...O1 interaction, and Ac-(E)-DeltaPhe-NHMe displays the NH/pi interaction with the N2--H2 projecting in the first carbon atom of the phenyl ring. The C5 hydrogen bond is stronger in (E)-DeltaPhe than that in the DeltaAla compound. This is in agreement with interactions found in the calculated structures and can be explained by the influence of the phenyl ring in position (E). In acetonitrile, the molecule of Ac-(E)-DeltaPhe-NHMe loses its C5 hydrogen bond and becomes unfolded, whereas that of Ac-DeltaAla-NHMe does not vary practically. Adopting conformation E in a non-polar solvent seems to be a general feature of the (E)-DeltaXaa residues.
Keywords:ab initio calculation  FTIR spectroscopy  NH/π interaction  C5 hydrogen bond  (E)‐dehydrophenylalanine  π‐electron conjugation  α  β‐dehydroamino acids  amide II
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号