Abstract: | The uptake of [3H]actinomycin D ([3H]AD) by ConA-stimulated lymphocytes was followed during 96 h of incubation and correlated with the level of nuclear proteins in the nucleus, DNA synthesis and the degree of AD-induced inhibition of RNA and DNA synthesis. During the first 48 h there is a parallel increase of drug binding to cells and a rising level of non-histone proteins (NHP) in the nucleus. During the next 48 h, DNA synthesis occurs, drug uptake decreases and the nuclear level of NHP continues to rise. The level of histones remains constant during 96 h. The variations in cellular [3H]AD uptake during 96 h are not due to changes in cell membrane permeability, since similar variations in drug binding are observed in isolated cell nuclei. NHP, obtained as 0.25 M NaCl extracts of cell nuclei, increase binding of [3H]AD to nuclei isolated from non-stimulated lymphocytes, while histones have no such effect. NHP extracted with phenol, after washing the nuclei with salt and acid solutions, or extracted with 0.25 M NaCl from non-stimulated and stimulated lymphocytes and Chang liver cells are equally active to bind [3H]AD to nuclei of non-stimulated lymphocytes. NHP from Chang cells, purified by DNA-cellulose chromatography using calf thymus DNA, stimulated [3H]AD binding to lymphocyte nuclei, indicating that the drug-binding activity is due to proteins binding to DNA. NHP increase binding of [3H]AD to pure DNA in the absence of histones. The degree of [3H]AD binding to ConA-stimulated lymphocytes during 96 h correlated with the degree of inhibition of RNA and DNA synthesis by AD. |