首页 | 本学科首页   官方微博 | 高级检索  
     


Properties and crystallization of a genetically engineered, water-soluble derivative of penicillin-binding protein 5 of Escherichia coli K12
Authors:L C Ferreira  U Schwarz  W Keck  P Charlier  O Dideberg  J M Ghuysen
Affiliation:Abteilung Biochemie, Institut für Entwicklungsbiologie, Tübingen, Federal Republic of Germany.
Abstract:Derivatives of the Escherichia coli penicillin-binding protein 5 (PBP5) with truncated carboxyl terminals were obtained by altering the carboxyl-coding end of the dacA gene. After cloning the modified dacA gene into a runaway-replication-control plasmid, one clone that overproduced and excreted the desired protein into the periplasm was used as a source for the isolation of a water-soluble PBP5 (i.e. PBP5S). In PBP5S the carboxyl-terminal 21-amino-acid region of the wild-type protein was replaced by a short 9-amino-acid segment. Milligram amounts of PBP5S were purified by penicillin affinity chromatography in the absence of detergents or of chaotropic agents. PBP5S was stable and possessed DD-carboxypeptidase activity without added Triton X-100. Upon reaction with [14C]benzylpenicillin it was converted into a rather short-lived acyl-enzyme complex, as observed with PBP5. Both PBP5 and PBP5S were crystallized. In contrast to PBP5, PBP5S yielded enzymatically active, well-formed prismatic crystals suitable for X-ray analysis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号