Effects of suspensoids (turbidity) on penetration of solar radiation in aquatic ecosystems |
| |
Authors: | John T. O. Kirk |
| |
Affiliation: | (1) Division of Plant Industry, CSIRO, Canberra, Australia |
| |
Abstract: | In mainland Australia and in southern Africa, the aridity of the climate and sparse vegetative cover increase the susceptibility of the soils to erosion, and as a consequence surface waters are usually turbid. The inanimate suspensoids in such waters, the tripton fraction of the limnologist, are responsible for virtually all the light scattering, and also, by virtue of the yellow-brown humic materials adsorbed on their surface, for a substantial part of the light absorption. Spectral absorption data for suspensoids in terms of theirin situ absorption coefficient values, and the contribution of suspensoids to absorption of photosynthetically available radiation (PAR) are given for certain Australian water bodies.To understand the effect of suspensoids on attenuation of the solar flux with depth, the scattering coefficient must also be known, and this can be determined from the nephelometric turbidity or from up- and down-welling irradiance measurements. The effect of particle size on scattering efficiency is discussed.An equation expressing the vertical attenuation coefficient for downward irradiance as a function of absorption coefficient, scattering coefficient and solar altitude is presented, and is used to explore the effects of absorption due to dissolved colour and suspensoids, and the effects of scattering by suspensoids, on the penetration of PAR.Suspensoids, by increasing the rate of attenuation of the solar flux with depth, can greatly diminish the euphotic depth of a water body, with a consequent decrease in the ratio of the euphotic to the mixed depth: thus turbidity can reduce productivity of a water body substantially below that which might be expected on the basis of nutrient availability. Shallow turbid waters of low intrinsic colour can, however, be highly productive. By diminishing the depth of the layer within which solar energy is dissipated as heat, suspensoids can greatly modify the hydrodynamic behaviour of water bodies, and this also has far-reaching ecological consequences.Suspensoids drastically impair the visual clarity of water, a fact of major significance for the aquatic fauna, as well of aesthetic significance for humanity. The reciprocal of the Secchi depth is more correctly thought of as a guide to the vertical contrast attenuation coefficient rather than to the vertical attenuation coefficient for irradiance. The reflectivity of a water body, being at any wavelength proportional to the backscattering coefficient divided by the absorption coefficient, is highly dependent on the concentration, and optical character, of the suspensoids present. This has implications not only for the appearance (colour, muddiness) of the water to an observer, but also for the remote sensing of water composition by air- or satellite-borne radiometric sensors. |
| |
Keywords: | limnology turbidity light attenuation scattering suspensoids |
本文献已被 SpringerLink 等数据库收录! |
|