首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Culture of large vessel endothelial cells on floating collagen gels promotes a phenotype characteristic of endothelium in vivo
Authors:Beck Laurence H  Goodwin Anne M  D'Amore Patricia A
Institution:Program in Biological and Biomedical Sciences, Harvard Medical School, Schepens Eye Research Institute, 20 Staniford Street, Boston, MA 02114, USA.
Abstract:The vascular endothelium in vivo is a remarkably quiescent cell layer that displays a highly differentiated and tissue-specific phenotype. Once established in culture, endothelial cells (EC) are phenotypically different from their in situ counterparts, displaying altered gene expression, increased mitotic index, and decreased cell density. To determine whether manipulating the microenvironment of cells in vitro would lead to a more differentiated phenotype, we cultured bovine aortic EC on floating collagen gels. EC cultured to confluence on floating gels for 24 or 48 hr display mitotic indices nearly identical to those of quiescent endothelium in vivo, nearly two log orders lower than that of EC cultured to confluence on plastic, and cell density on floating gels also resembles that observed for endothelium in vivo. Culture of EC on floating gels leads to decreased expression of platelet-derived growth factor-B, fibronectin, and fibronectin isoform ED-B, and increased levels of connexin40, relative to cells cultured on plastic. We conclude that culture of bovine aortic EC under standard culture conditions results in a phenotype reminiscent of development and/or wound healing, and that culturing them on a floating collagen gel leads to a more differentiated phenotype, reminiscent of that observed for large vessel EC in vivo.
Keywords:proliferation  differentiation  gene expression  cell shape  PDGF  connexin40  fibronectin  ED-B
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号