首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Leaf productivity along a precipitation gradient in lowland Panama: patterns from leaf to ecosystem
Authors:Louis S Santiago  Stephen S Mulkey
Institution:(1) Department of Botany, University of Florida, PO Box 118526, Gainesville, FL 32611-8526, USA;(2) Integrative Biology, University of California, 3060 Valley Life Sciences Building, Berkeley, CA 94720, USA
Abstract:Moisture availability has the potential to affect tropical forest productivity at scales ranging from leaf to ecosystem. We compared data for leaf photosynthetic, chemical and structural traits of canopy trees, litterfall production and seasonal availability of soil water at four sites across a precipitation gradient (1,800–3,500 mm year–1) in lowland Panamanian forest to determine how productivity at leaf and ecosystem scales may be related. We found stronger seasonality in soil water potential at drier sites. Values were close to zero at all sites during the wet season and varied between a minimum of –2.5 MPa and –0.3 MPa at the driest and wettest sites, respectively, during the dry season. Leaf photosynthesis and nitrogen concentration decreased with increasing precipitation, whereas leaf thickness increased with increasing precipitation. Leaf toughness and fiber/N ratios increased with increasing precipitation indicating reduced nutritional content and palatability with precipitation. Seasonality of litter production and quality decreased with increasing precipitation, but the amount of litterfall produced was not substantially different among sites. It appears that in Neotropical forest, moisture availability is associated with leaf photosynthetic and defensive traits that influence litterfall timing and quality. Therefore, variation in leaf physiological traits has the potential to influence decomposition and nutrient cycling through effects on litter quality.
Keywords:Lignin  Nitrogen  Photosynthesis  Soil water potential  Tropical forest
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号