首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structural basis for catalysis and substrate specificity of Agrobacterium radiobacter N-carbamoyl-D-amino acid amidohydrolase
Authors:Chen Cheng-Yu  Chiu Wei-Chun  Liu Jai-Shin  Hsu Wen-Hwei  Wang Wen-Ching
Institution:Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
Abstract:N-Carbamoyl-d-amino acid amidohydrolase is an industrial biocatalyst to hydrolyze N-carbamoyl-d-amino acids for producing valuable d-amino acids. The crystal structure of N-carbamoyl-d-amino acid amidohydrolase in the unliganded form exhibits a alpha-beta-beta-alpha fold. To investigate the roles of Cys172, Asn173, Arg175, and Arg176 in catalysis, C172A, C172S, N173A, R175A, R176A, R175K, and R176K mutants were constructed and expressed, respectively. All mutants showed similar CD spectra and had hardly any detectable activity except for R173A that retained 5% of relative activity. N173A had a decreased value in kcat or Km, whereas R175K or R176K showed high Km and very low kcat values. Crystal structures of C172A and C172S in its free form and in complex form with a substrate, along with N173A and R175A, have been determined. Analysis of these structures shows that the overall structure maintains its four-layer architecture and that there is limited conformational change within the binding pocket except for R175A. In the substrate-bound structure, side chains of Glu47, Lys127, and C172S cluster together toward the carbamoyl moiety of the substrate, and those of Asn173, Arg175, and Arg176 interact with the carboxyl group. These results collectively suggest that a Cys172-Glu47-Lys127 catalytic triad is involved in the hydrolysis of the carbamoyl moiety and that Arg175 and Arg176 are crucial in binding to the carboxyl moiety, hence demonstrating substrate specificity. The common (Glu/Asp)-Lys-Cys triad observed among N-carbamoyl-d-amino acid amidohydrolase, NitFhit, and another carbamoylase suggests a conserved and robust platform during evolution, enabling it to catalyze the reactions toward a specific nitrile or amide efficiently.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号