首页 | 本学科首页   官方微博 | 高级检索  
     


Unhindered copper uptake by glutaraldehyde-polyethyleneimine coatings in an artificial seawater model system with adsorbed swollen polysaccharides and competing ligand EDTA
Authors:Simarpreet Kaur  Ivan M. Kempson  Johan B. Lindén  Magnus Nydén
Affiliation:1. Future Industries Institute, University of South Australia, Mawson Lakes, Australia;2. School of Energy and Resources, University College London, Adelaide, Australia
Abstract:Shortly after a surface is submerged in the sea, a conditioning film is generally formed by adsorption of organic molecules, such as polysaccharides. This could affect transport of molecules and ions between the seawater and the surface. An artificial seawater model system was developed to understand how adsorbed polysaccharides impact copper binding by glutaraldehyde-crosslinked polyethyleneimine coatings. Coating performance was also determined when competed against copper-chelating EDTA. Polysaccharide adsorption and copper binding and distribution were investigated using advanced analytical techniques, including depth-resolved time-of-flight secondary ion mass spectroscopy, grazing incidence X-ray absorption near-edge spectroscopy, quartz crystal microbalance with dissipation monitoring and X-ray photoelectron spectroscopy. In artificial seawater, the polysaccharides adsorbed in a swollen state that copper readily penetrated and the glutaraldehyde-polyethyleneimine coatings outcompeted EDTA for copper binding. Furthermore, the depth distribution of copper species was determined with nanometre precision. The results are highly relevant for copper-binding and copper-releasing materials in seawater.
Keywords:Antifouling  biocidal metals  copper chelation  kinetics  polyethyleneimine  selective binding
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号