首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A stable Na+/H+ antiporter of thermophilic bacterium PS3
Authors:Kimihiko Goto  Hajime Hirata  Yasuo Kagawa
Institution:(1) Laboratory of Microbiology, Faculty of Agriculture, Nagoya University, Chikusa-ku, 464 Nagoya, Aichi, Japan;(2) Present address: Department of Biochemistry, Jichi Medical School Minamikawachi-machi, 329-04 Tochigi-ken, Japan
Abstract:As a first step in the isolation of a stable Na+/H+ antiporter, its reaction in sonicated membrane vesicles of thermophilic bacterium PS3 has been characterized. The sonicated vesicles showed quenching of quinacrine fluorescence in either NADH oxidation or ATP hydrolysis. The quenching was reversed by the addition of Na+, Li+, Mn2+, Cd2+, and Co2+, but not of choline+ or Ca2+, regardless of their counter anions.22Na+ was taken up into the vesicles by NADH oxidation, and the22Na+ uptake was inhibited by the addition of an uncoupler. H+ release was observed on addition of Na+ to sonicated vesicles. The magnitude of the pH difference across the membrane induced by NADH oxidation was constant at pH 7.0 to 9.1, but the Na+/H+ antiport was affected by the pH of the medium (optimum pH=8.5). TheK m 's of the antiporter for Na+ and Li+ were 2.5 and 0.1 mM, respectively, but theV max values for the two ions were the same at pH 8.0. In the presence of Li+, no further decrease of fluorescence quenching was observed on addition of Na+ andvice versa. The Na+/H+ antiporter activity in PS3 was stable at 70°C, and the optimum temperature for activity was 55–60°C. In contrast to mesophilic cation/H+ antiporters, this antiporter was not inhibited by a thiol reagent.Abbreviations Tricine N-tris(hydroxymethyl)methylglycine - MOPS morpholinopropane sulfonic acid - TMAHO tetramethylammonium hydroxide - DCCD N,Nprime-dicyclohexylcarbodiimide - FCCP carbonyl cyanidep-trifluoromethoxyphenylhydrazone - H+ — ATPase proton-translocating adenosine triphosphatase - 
$$\Delta \bar \mu _{{\text{H}}^{\text{ + }} } $$
electrochemical proton gradient across membrane - 
$$\Delta \bar \mu _{{\text{Na}}^{\text{ + }} } $$
electrochemical Na+ gradient across membrane - DeltapH pH difference across membrane
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号