首页 | 本学科首页   官方微博 | 高级检索  
     


Developmental control of Presenilin1 expression,endoproteolysis, and interaction in zebrafish embryos
Authors:Nornes Svanhild  Groth Casper  Camp Esther  Ey Peter  Lardelli Michael
Affiliation:Department of Molecular Biosciences, The University of Adelaide, 5005 South Australia, Australia.
Abstract:Dominant mutations in presenilin1 (PS1) and presenilin2 (PS2) are a major cause of early-onset Alzheimer's disease. In this report we analyze the expression of the zebrafish presenilin1 (Psen1) and presenilin2 (Psen2) proteins during embryogenesis. We demonstrate that Psen1 and Psen2 holoproteins are relatively abundant in zebrafish embryos and are proteolytically processed. Psen1 is maternally expressed, whereas Psen2 is expressed at later stages during development. The Psen1 C-terminal proteolytic fragment (CTF) is present at varying levels during embryogenesis, indicating the existence of developmental control mechanisms regulating its production. We examine the codependency of Psen1 and Psen2 expression during early embryogenesis. Forced overexpression of psen2 increases expression of Psen2 holoprotein, but not the N-terminal fragment (NTF), indicating that levels of Psen2 NTF are strictly controlled. Overexpression of psen2 did not alter levels of Psen1 holoprotein, CTF, or higher molecular weight complexes. Reduction of Psen1 activity in zebrafish embryos produces similar developmental defects to those seen for loss of PS1 activity in knockout mice. The relevance of these results to previous work on presenilin protein regulation and function are discussed. Our work shows that zebrafish embryos are a valid and valuable system in which to study presenilin interactions, regulation, and function.
Keywords:Presenilin   Zebrafish   Embryo development   Somitogenesis   Notch   Alzheimer’s disease
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号