首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Hydrogen sulphide exacerbates acute pancreatitis by over‐activating autophagy via AMPK/mTOR pathway
Authors:Liang Ji  Le Li  Fengzhi Qu  Guangquan Zhang  Yongwei Wang  Xuewei Bai  Shangha Pan  Dongbo Xue  Gang Wang  Bei Sun
Institution:1. Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China;2. Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
Abstract:Previously, we have shown that hydrogen sulphide (H2S) might be pro‐inflammatory during acute pancreatitis (AP) through inhibiting apoptosis and subsequently favouring a predominance of necrosis over apoptosis. In this study, we sought to investigate the detrimental effects of H2S during AP specifically with regard to its regulation on the impaired autophagy. The incubated levels of H2S were artificially intervened by an administration of sodium hydrosulphide (NaHS) or DL‐propargylglycine (PAG) after AP induction. Accumulation of autophagic vacuoles and pre‐mature activation of trypsinogen within acini, which indicate the impairment of autophagy during AP, were both exacerbated by treatment with NaHS but attenuated by treatment with PAG. The regulation that H2S exerted on the impaired autophagy during AP was further attributed to over‐activation of autophagy rather than hampered autophagosome–lysosome fusion. To elucidate the molecular mechanism that underlies H2S‐mediated over‐activation of autophagy during AP, we evaluated phosphorylations of AMP‐activated protein kinase (AMPK), AKT and mammalian target of rapamycin (mTOR). Furthermore, Compound C (CC) was introduced to determine the involvement of mTOR signalling by evaluating phosphorylations of downstream effecters including p70 S6 kinase (P70S6k) and UNC‐51‐Like kinase 1 (ULK1). Our findings suggested that H2S exacerbated taurocholate‐induced AP by over‐activating autophagy via activation of AMPK and subsequently, inhibition of mTOR. Thus, an active suppression of H2S to restore over‐activated autophagy might be a promising therapeutic approach against AP‐related injuries.
Keywords:acute pancreatitis  hydrogen sulphide  impaired autophagy  AMPK  mTOR
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号