首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular structure of antitumor drug steffimycin and modelling of its binding to DNA.
Authors:M Sriram  Y C Liaw  Y G Gao  A H Wang
Institution:Department of Physiology and Biophysics, University of Illinois, Urbana-Champaign 61801.
Abstract:The molecular and crystal structure of steffimycin have been determined by single crystal X-ray diffraction to 0.9 angstrom resolution. The triclinic crystals are in the space group P1, with the unit cell dimensions of a = 8.606(3) angstrom, b = 22.168(7) angstrom, c = 8.448(2) angstrom, alpha = 97.56(3) degrees, beta = 95.97(2) degrees, gamma = 87.94(3) degrees, Z = 2. The structure was solved by direct methods and refined by the full-matrix least-squares method to a final R value of 0.065 with 3405 (Inet greater than 2.0 sigma (Inet] observed reflections using the NRCVAX software package. The crystal lattice includes 2 independent steffimycin, 3 water and one 2-methyl-2,4-pentanediol molecules. The conformation of steffimycin is grossly similar to other anthracycline antibiotics including daunorubicin. The crystal packing interactions of steffimycin suggest a preferred stacking of the aglycone chromophore of the antibiotic which resembles the intercalative interactions seen in the daunorubicin-d(CGTACG) (Wang et al., Biochemistry 26, 1152 (1987] and nogalamycin-d(CGT(pS)ACG) (Liaw et al., Biochemistry 28, 9913 (1989] complexes. The atomic coordinates data from these complexes were used to model the intercalative binding of steffimycin to DNA. The models were then stereochemically idealized by the constraint refinement program NUCLSQ. Subsequently XPLOR software package was used for energy minimization of these models in vacuo. The model building studies suggest that steffimycin has a higher CpG base sequence specificity over the TpA step, similar to that of daunorubicin and nogalamycin.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号