Overcoming the signaling defect of Lyn-sequestering, signal-curtailing FcepsilonRI dimers: aggregated dimers can dissociate from Lyn and form signaling complexes with Syk |
| |
Authors: | Lara M Ortega E Pecht I Pfeiffer J R Martinez A M Lee R J Surviladze Z Wilson B S Oliver J M |
| |
Affiliation: | Departamento de Inmunologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autónoma de Mexico, Mexico DF, Mexico. |
| |
Abstract: | Clustering the tetrameric (alphabetagamma(2)) IgE receptor, FcepsilonRI, on basophils and mast cells activates the Src-family tyrosine kinase, Lyn, which phosphorylates FcepsilonRI beta and gamma subunit tyrosines, creating binding sites for the recruitment and activation of Syk. We reported previously that FcepsilonRI dimers formed by a particular anti-FcepsilonRI alpha mAb (H10) initiate signaling through Lyn activation and FcepsilonRI subunit phosphorylation, but cause only modest activation of Syk and little Ca(2+) mobilization and secretion. Curtailed signaling was linked to the formation of unusual, detergent-resistant complexes between Lyn and phosphorylated receptor subunits. Here, we show that H10-FcepsilonRI multimers, induced by adding F(ab')(2) of goat anti-mouse IgG to H10-treated cells, support strong Ca(2+) mobilization and secretion. Accompanying the recovery of signaling, H10-FcepsilonRI multimers do not form stable complexes with Lyn and do support the phosphorylation of Syk and phospholipase Cgamma2. Immunogold electron microscopy showed that H10-FcepsilonRI dimers colocalize preferentially with Lyn and are rarely within the osmiophilic "signaling domains" that accumulate FcepsilonRI and Syk in Ag-treated cells. In contrast, H10-FcepsilonRI multimers frequently colocalize with Syk within osmiophilic patches. In sucrose gradient centrifugation analyses of detergent-extracted cells, H10-treated cells show a more complete redistribution of FcepsilonRI beta from heavy (detergent-soluble) to light (Lyn-enriched, detergent-resistant) fractions than cells activated with FcepsilonRI multimers. We hypothesize that restraints imposed by the particular orientation of H10-FcepsilonRI dimers traps them in signal-initiating Lyn microdomains, and that converting the dimers to multimers permits receptors to dissociate from Lyn and redistribute to separate membrane domains that support Syk-dependent signal propagation. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|