首页 | 本学科首页   官方微博 | 高级检索  
     


The maize gene maternal derepression of r1 encodes a DNA glycosylase that demethylates DNA and reduces siRNA expression in the endosperm
Authors:Jonathan I Gent  Kaitlin M Higgins  Kyle W Swentowsky  Fang-Fang Fu  Yibing Zeng  Dong won Kim  R Kelly Dawe  Nathan M Springer  Sarah N Anderson
Affiliation:Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA;Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011, USA;Co‐Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China;Department of Genetics, University of Georgia, Athens, Georgia 30602, USA;Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
Abstract:Demethylation of transposons can activate the expression of nearby genes and cause imprinted gene expression in the endosperm; this demethylation is hypothesized to lead to expression of transposon small interfering RNAs (siRNAs) that reinforce silencing in the next generation through transfer either into egg or embryo. Here we describe maize (Zea mays) maternal derepression of r1 (mdr1), which encodes a DNA glycosylase with homology to Arabidopsis thaliana DEMETER and which is partially responsible for demethylation of thousands of regions in endosperm. Instead of promoting siRNA expression in endosperm, MDR1 activity inhibits it. Methylation of most repetitive DNA elements in endosperm is not significantly affected by MDR1, with an exception of Helitrons. While maternally-expressed imprinted genes preferentially overlap with MDR1 demethylated regions, the majority of genes that overlap demethylated regions are not imprinted. Double mutant megagametophytes lacking both MDR1 and its close homolog DNG102 result in early seed failure, and double mutant microgametophytes fail pre-fertilization. These data establish DNA demethylation by glycosylases as essential in maize endosperm and pollen and suggest that neither transposon repression nor genomic imprinting is its main function in endosperm.

Demethylation by DNA glycosylases is important for endosperm development, but only a subset of the affected loci are imprinted, suggesting demethylation may have additional functions.

IN A NUTSHELL Background: In 1970, Jerry Kermicle reported that maize kernels could have dramatically different pigmentation depending on which parent the r1 gene is inherited from. This was the first discovery of many genomically imprinted genes that are selectively expressed from the maternal genome in endosperm. Later, Kermicle also discovered a mutant with poor maternal r1 expression. He hypothesized that the normal function of the mutated gene would be to derepress maternal r1; hence the name maternal depression of r1 (mdr1). The identify of mdr1 has remained unknown since then, but studies using Arabidopsis thaliana have revealed that DNA demethylation by enzymes called DNA glycosylases is important for expression of some maternally inherited genes in endosperm. Question: We wanted to identify the mdr1 gene. We hypothesized that mdr1 would reveal insights into molecular mechanisms of genomic imprinting in maize. Findings: We discovered that mdr1 encodes one of two DNA glycosylases with high expression in endosperm. We found that at least one of the two must be functional for endosperm to develop normally, but the one encoded by mdr1 is expressed higher. Surprisingly, most of the genes the mdr1 DNA glycosylase demethylates do not appear to be genomically imprinted, and about half the DNA it demethylates is not even near genes. These findings suggest that DNA glycosylases also have an undiscovered function unrelated to genomic imprinting in endosperm. Next steps: We want to know how specific regions in the genome are targeted for demethylation. What distinguishes these regions from other regions in endosperm? And what keeps them from being demethylated in other tissues? On the flip side, little is known about the effect of demethylation in endosperm, other than genomic imprinting. We want to know what effect DNA demethylation by DNA glycosylases has on chromatin structure and why it is important.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号