首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Regulation of Glucose Metabolism in Thiobacillus intermedius
Authors:Abdul Matin and  Sydney C Rittenberg
Abstract:Glucose-yeast extract or glucose-casein hydrolysate-grown Thiobacillus intermedius cells, which use glucose for energy generation, possess high specific activities of the Entner-Doudoroff pathway and related enzymes, 6-phosphogluconate dehydrase, 2-keto-3-deoxy-6-phosphogluconate aldolase, glucokinase, and glucose-6-phosphate dehydrogenase, but low activities of enzymes unique to the pentose shunt and Embden-Meyerhof pathways. Although the synthesis of the latter enzymes remains largely unaffected by the growth environment, that of the former is stimulated by glucose. Radiorespirometric measurements demonstrate an early and parallel respiration of glucose carbon atoms one and four in glucose-casein hydrolysate broth. It is concluded that the Entner-Doudoroff pathway performs an energetic role in glucose metabolism by T. intermedius with the pentose shunt and Embden-Meyerhof pathways functioning mainly in biosynthesis. The presence of thiosulfate in the growth medium inhibits the synthesis of the Entner-Doudoroff pathway and related enzymes. In addition, both thiosulfate and glucose inhibit the synthesis of the Krebs cycle enzymes, nicotinamide adenine dinucleotide phosphate-linked isocitrate and alpha-ketoglutarate dehydrogenases. Thus, repression of enzymes is of significance in the adaptation of T. intermedius to its nutritional environment. The activity of glucose-6-phosphate dehydrogenase of T. intermedius is inhibited by adenosine triphosphate. Such a control could afford the organism a mechanism to regulate the flow of glucose into major energetic and biosynthetic routes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号