首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular Evolution of Cytochrome b of Subterranean Mole Rats, Spalax ehrenbergi Superspecies, in Israel
Authors:Eviatar Nevo  Avigdor Beiles  Theresa Spradling
Affiliation:(1) Institute of Evolution, University of Haifa, Haifa 31905, Israel, IL;(2) Department of Biology, University of North Iowa, Cedar Falls, IA 50613, USA, US
Abstract:We describe the molecular evolution of cytochrome b of blind subterranean mole rats. We examined 12 individuals for nucleotide differences in the region of 402 base pairs of mitochondrial cytochrome b. Each individual represents a different population from the entire ecological and speciational range of the four chromosomal species in Israel (2n= 52, 54, 58, and 60) belonging to the Spalax ehrenbergi superspecies. Our results indicate the following. (i) There are seven first-position transitional differences, compared to 34 variable third positions, with no observed second-position substitutions. (ii) A maximum of four amino acids differences occurs across the range. (iii) Within-species diversity increases southward. Only 1 autoapomorphic substitution characterizes either 2n= 52 or 2n= 54, but 6–11 substitutions characterize 2n= 58, and 9–13 substitutions characterize 2n= 60. (iv) Both parsimony and maximum-likelihood trees suggest two monophyletic groups: (a) 2n= 52 and 54, and (b) 2n= 58 and 60, as identified earlier by other protein and DNA markers. (v) Mitochondrial cytochrome b heterogeneity is significantly correlated with climatic factors (rainfall) and biotic factors (body size and allozymes). We hypothesize that two selective regimes direct cytochrome b evolution in the S. ehrenbergi superspecies: (i) purifying selection in the flooded, mesic, hypoxic northern range of 2n= 52 and 54 and (ii) diversifying selection in the climatically spatiotemporal, xeric, and variable southern range of 2n= 58 and 60. Thus, the molecular evolution of mitochondrial cytochrome b in S. ehrenbergi is explicable by opposite selective stresses across the range of S. ehrenbergi in Israel, associated with the ecological adaptive radiation of the complex. Received: 23 October 1998 / Accepted: 2 May 1999
Keywords:: Speciation —   Adaptation —   Subterranean mammals —   Molecular evolution —   Mitochondrial cytochrome b—   Transition–  transversion ratio —   Codon usage —   DNA compositional bias
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号