首页 | 本学科首页   官方微博 | 高级检索  
     


The Combined Effects of Moss-Dominated Biocrusts and Vegetation on Erosion and Soil Moisture and Implications for Disturbance on the Loess Plateau,China
Authors:Chongfeng Bu  Shufang Wu  Fengpeng Han  Yongsheng Yang  Jie Meng
Affiliation:1Northwest A & F University, State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Yangling, Shaanxi, China;2Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China;3College of Water Resources and Architectural Engineering, Northwest A & F University, Yangling, Shaanxi, China;Beijing Normal University, CHINA
Abstract:Biological soil crusts (BSCs, or biocrusts) have important positive ecological functions such as erosion control and soil fertility improvement, and they may also have negative effects on soil moisture in some cases. Simultaneous discussions of the two-sided impacts of BSCs are key to the rational use of this resource. This study focused on the contribution of BSCs while combining with specific types of vegetation to erosion reduction and their effects on soil moisture, and it addressed the feasibility of removal or raking disturbance. Twelve plots measuring 4 m × 2 m and six treatments (two plots for each) were established on a 15° slope in a small watershed in the Loess Plateau using BSCs, bare land (as a control, BL), Stipa bungeana Trin. (STBU), Caragana korshinskii Kom. (CAKO), STBU planted with BSCs (STBU+BSCs) and CAKO planted with BSCs (CAKO+BSCs). The runoff, soil loss and soil moisture to a depth of 3 m were measured throughout the rainy season (from June to September) of 2010. The results showed that BSCs significantly reduced runoff by 37.3% and soil loss by 81.0% and increased infiltration by 12.4% in comparison with BL. However, when combined with STBU or CAKO, BSCs only made negligible contributions to erosion control (a runoff reduction of 7.4% and 5.7% and a soil loss reduction of 0.7% and 0.3%). Generally, the soil moisture of the vegetation plots was lower in the upper layer than that of the BL plots, although when accompanied with a higher amount of infiltration, this soil moisture consumption phenomenon was much clearer when combining vegetation with BSCs. Because of the trivial contributions from BSCs to erosion control and the remaining exacerbated consumption of soil water, moderate disturbance by BSCs should be considered in plots with adequate vegetation cover to improve soil moisture levels without a significant erosion increase, which was implied to be necessary and feasible.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号