首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Identification of phylogenetic trees of minimal length.
Authors:M D Hendy  D Penny  L R Foulds
Institution:Department of Mathematics, and Department of Botany and Zoology, Massey University, Palmerston North, New Zealand
Abstract:The problem of determining an optimal phylogenetic tree from a set of data is an example of the Steiner problem in graphs. There is no efficient algorithm for solving this problem with reasonably large data sets. In the present paper an approach is described that proves in some cases that a given tree is optimal without testing all possible trees. The method first uses a previously described heuristic algorithm to find a tree of relatively small total length. The second part of the method independently analyses subsets of sites to determine a lower bound on the length of any tree. We simultaneously attempt to reduce the total length of the tree and increase the lower bound. When these are equal it is not possible to make a shorter tree with a given data set and given criterion. An example is given where the only two possible minimal trees are found for twelve different mammalian cytochrome c sequences. The criterion of finding the smallest number of minimum base changes was used. However, there is no general method of guaranteeing that a solution will be found in all cases and in particular better methods of improving the estimate of the lower bound need to be developed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号