首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dark adaptation,sensitivity, and rhodopsin level in the eye of the lobster,Homarus
Authors:Stephen N Barnes  Timothy H Goldsmith
Institution:(1) Physiology Section, School of Life and Health Sciences, University of Delaware, 19711 Newark, Delaware;(2) Department of Biology, Yale University, 06520 New Haven, Connecticut;(3) Marine Biological Laboratory, 02543 Woods Hole, Massachusetts, USA
Abstract:Summary Dark adaptation of living lobsters was measured by recording the ERG at several temperatures in the range 5–20 °C following adapting flashes that convert about 70% of the rhodopsin to metarhodopsin. Recovery of log threshold is rapid, and at 10–20° is nearly complete in 10 min. Only at 5 °C is dark adaptation significantly slowed. Comparison of dark adaptation with data on regeneration of pigment (Bruno et al., 1977) is consistent with the hypothesis that as rhodopsin concentration rises and falls, its only effect on sensitivity is to alter the probability of quantum catch. This interpretation is further bolstered by observations on winter lobsters that have a 70% deficiency of rhodopsin without the concomitant increase in metarhodopsin that accompanies light adaptation. No effect of metarhodopsin on sensitivity was detected. These experiments support the growing body of evidence indicating that the relationship between rhodopsin concentration and log threshold is fundamentally different in the rhabdomeric photoreceptors of invertebrates and the rods and cones of vertebrates.This work was supported by USPHS research grant EY 00222 to Yale University. S.N.B. was aided by NIH Postdoctoral Fellowship EY 52378, by funds made available through the Unidel Foundation, and by a grant from the University of Delaware Research Foundation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号