首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mineral and lipid composition of Glycine - Glomus - Bradyrhizobium symbioses
Authors:Raymond S Pacoysky  Glenn Fuller
Institution:US Dept of Agriculture. Western Regional Research Center, Albany. CA 94710. USA.
Abstract:Soybean Glyeine max (L.) Merr. cv. Amsoy 71] plants were inoculated with either the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum. with a strain of Bradyrizobobium Japonicum. or with both endophytes in combintion. Noninoculated controlplantes were fertilized with levels of N and P previously found to compensate for nutrient input following infection by Bradyhizobium or Glomus Temporal differences in N and P assimilation in nodulated or mycorrhizal plants indicated that Glomus was most effective during early vegetative growth and Bradyrhizobion was active until the mid-pod-fill stage in soybean. In general. soybeans colonized by Glomus contained more Cu but less Mn and P than corresponding P-fertilized plants. Soyubean roots infected with G. fasciculaum contained five unusual fatty acids: 16: 1 (11c): 8:3 (6c, 9c, 12c): 20:3 (8c, 11c, 14c): 20:4 (5c, 8c, 11c, 14c): 20:5 (5c, 8c, 11c, 14c, 17c)] that were absent in non-infected roots. Fatty acid 16:1 (11c) comprised 43% of total fatty acids in Glomus-infected roots at week 9 and 29% of total root fatty acids at week 15. This isomer of hexadecenoic acid was positively correlated with vesicle number (r = 0.92**). and 16:1 (11c) was probably the principalstorage fatty acid in fungal vesicles. These five unusual fatty acids were not found in the leaves. pods or seeds of either VAM or non-VAM plants. Specific leaf area increased with time in nodulated soybeans. but these plants contained lessCu than corresponding N-fertilized plants. Soybeans nodulated with Bradyrthizobium contained more total lipid and proportionately more fatty acid 16:0 than N-fertilized plants. Infection by Glomus or Bradyrhizobium also altered the fatty acid composition of above-ground plant parts, although these changes were subtle compared to the markedly different fatty acid found in Glomus-infected roots. These findings suggest that seed quality may be altered due to the physiological changes resulting from infection by N2-fixing bacteria and/or endomycorrhizal fungi. Observed differences in the plant nutrition of inoculated soybeans could not be replicated by fertilizer addition alone.
Keywords:Bradyrhizobium japonicum            disaturation  fatty acids              Glomus fasciculatum                        Glycine max            mineral nutrition  nitrogen fixation  nodulation  soybean  vesicular-arbuscular mycorrhiza
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号