首页 | 本学科首页   官方微博 | 高级检索  
     


Role of the pepper cytochrome P450 gene CaCYP450A in defense responses against microbial pathogens
Authors:In Sun Hwang  Byung Kook Hwang
Affiliation:(1) Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713, Korea;
Abstract:Plant cytochrome P450 enzymes are involved in a wide range of biosynthetic reactions, leading to various fatty acid conjugates, plant hormones, or defensive compounds. Herein, we have identified the pepper cytochrome P450 gene CaCYP450A, which is differentially induced during Xanthomonas campestris pv. vesicatoria (Xcv) infection. CaCYP450A contains a heme-binding motif, PXFXXGXRXCXG, located in the C-terminal region and a hydrophobic membrane anchor region at the N terminal. Knock-down of CaCYP450A by virus-induced gene silencing (VIGS) led to increased susceptibility to Xcv infection in pepper. CaCYP450A-overexpressing Arabidopsis plants exhibited lower pathogen growth and reduced disease symptoms, and they were more resistant to Pseudomonas syringae pv. tomato (Pst) and Hyaloperonospora arabidopsidis than wild-type plants. Overexpression of CaCYP450A also enhanced H2O2 accumulation and cell death. However, CaCYP450A Arabidopsis ortholog CYP94B3 mutants showed enhanced susceptibility to virulent Pst DC3000, but not to avirulent Pst DC3000 avrRpm1 or virulent H. arabidopsidis infection. Taken together, these results suggest that CaCYP450A is required for defense responses to microbial pathogens in plants. The nucleotide sequence data reported here has been deposited in the GenBank database under the accession number HM581974.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号