首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Reduced oxygen supply explains the negative force-frequency relation and the positive inotropic effect of adenosine in buffer-perfused hearts
Authors:Marin Rodrigo M  Franchini Kleber G
Institution:Department of Internal Medicine, School of Medicine, State University of Campinas, Campinas SP, Brazil.
Abstract:In isolated rat hearts perfused with HEPES and red blood cell-enriched buffers, we examined changes in left ventricular pressure induced by increases in heart rate or infusion of adenosine to investigate whether the negative force-frequency relation and the positive inotropic effect of adenosine are related to an inadequate oxygen supply provided by crystalloid perfusates. Hearts perfused with HEPES buffer at a constant flow demonstrated a negative force-frequency relation, whereas hearts perfused with red blood cell-enriched buffer exhibited a positive force-frequency relation. In contrast, HEPES buffer-perfused hearts showed a concentration-dependent increase in left ventricular systolic pressure EC50 = 7.0 +/- 1.2 nM, maximal effect (Emax) = 104 +/- 2 and 84 +/- 2 mmHg at 0.1 microM and baseline, respectively] in response to adenosine, whereas hearts perfused with red blood cell-enriched buffer showed no change in left ventricular pressure. The positive inotropic effect of adenosine correlated with the simultaneous reduction in heart rate (r = 0.67, P < 0.01; EC50 = 3.8 +/- 1.4 nM, baseline 228 +/- 21 beats/min to a minimum of 183 +/- 22 beats/min at 0.1 microM) and was abolished in isolated hearts paced to suppress the adenosine-induced bradycardia. In conclusion, these results indicate that the negative force-frequency relation and the positive inotropic effect of adenosine in the isolated rat heart are related to myocardial hypoxia, rather than functional peculiarities of the rat heart.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号