首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of Cu,Zn-SOD in the synthesis of endogenous vasodilator hydrogen peroxide during reactive hyperemia in mouse mesenteric microcirculation in vivo
Authors:Yada Toyotaka  Shimokawa Hiroaki  Morikawa Keiko  Takaki Aya  Shinozaki Yoshiro  Mori Hidezo  Goto Masami  Ogasawara Yasuo  Kajiya Fumihiko
Institution:Department of Medical Engineering and Systems Cardiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192 Japan. yada@me.kawasaki-m.ac.jp
Abstract:We have recently demonstrated that endothelium-derived hydrogen peroxide (H2O2) is an endothelium-derived hyperpolarizing factor and that endothelial Cu/Zn-superoxide dismutase (SOD) plays an important role in the synthesis of endogenous H2O2 in both animals and humans. We examined whether SOD plays a role in the synthesis of endogenous H2O2 during in vivo reactive hyperemia (RH), an important regulatory mechanism. Mesenteric arterioles from wild-type and Cu,Zn-SOD(-/-) mice were continuously observed by a pencil-type charge-coupled device (CCD) intravital microscope during RH (reperfusion after 20 and 60 s of mesenteric artery occlusion) in the cyclooxygenase blockade under the following four conditions: control, catalase alone, N(G)-monomethyl-L-arginine (L-NMMA) alone, and L-NMMA + catalase. Vasodilatation during RH was significantly decreased by catalase or L-NMMA alone and was almost completely inhibited by L-NMMA + catalase in wild-type mice, whereas it was inhibited by L-NMMA and L-NMMA + catalase in the Cu,Zn-SOD(-/-) mice. RH-induced increase in blood flow after L-NMMA was significantly increased in the wild-type mice, whereas it was significantly reduced in the Cu,Zn-SOD(-/-) mice. In mesenteric arterioles of the Cu,Zn-SOD(-/-) mice, Tempol, an SOD mimetic, significantly increased the ACh-induced vasodilatation, and the enhancing effect of Tempol was decreased by catalase. Vascular H(2)O(2) production by fluorescent microscopy in mesenteric arterioles after RH was significantly increased in response to ACh in wild-type mice but markedly impaired in Cu,Zn-SOD(-/-) mice. Endothelial Cu,Zn-SOD plays an important role in the synthesis of endogenous H(2)O(2) that contributes to RH in mouse mesenteric smaller arterioles.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号